Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3313, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632281

RESUMO

Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Genoma Viral , Recombinação Genética , Filogenia
3.
Database (Oxford) ; 20232023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410916

RESUMO

With the progression of the COVID-19 pandemic, large datasets of SARS-CoV-2 genome sequences were collected to closely monitor the evolution of the virus and identify the novel variants/strains. By analyzing genome sequencing data, health authorities can 'hunt' novel emerging variants of SARS-CoV-2 as early as possible, and then monitor their evolution and spread. We designed VariantHunter, a highly flexible and user-friendly tool for systematically monitoring the evolution of SARS-CoV-2 at global and regional levels. In VariantHunter, amino acid changes are analyzed over an interval of 4 weeks in an arbitrary geographical area (continent, country, or region); for every week in the interval, the prevalence is computed and changes are ranked based on their increase or decrease in prevalence. VariantHunter supports two main types of analysis: lineage-independent and lineage-specific. The former considers all the available data and aims to discover new viral variants. The latter evaluates specific lineages/viral variants to identify novel candidate designations (sub-lineages and sub-variants). Both analyses use simple statistics and visual representations (diffusion charts and heatmaps) to track viral evolution. A dataset explorer allows users to visualize available data and refine their selection. VariantHunter is a web application free to all users. The two types of supported analysis (lineage-independent and lineage-specific) allow user-friendly monitoring of the viral evolution, empowering genomic surveillance without requiring any computational background. Database URL http://gmql.eu/variant_hunter/.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Mapeamento Cromossômico
5.
PLoS One ; 18(4): e0281052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115764

RESUMO

BACKGROUND: SARS-CoV-2 viremia has been found to be a potential prognostic factor in patients hospitalized for COVID-19. OBJECTIVE: We aimed to assess the association between SARS-CoV-2 viremia and mortality in COVID-19 hospitalized patients during different epidemic periods. METHODS: A prospective COVID-19 registry was queried to extract all COVID-19 patients with an available SARS-CoV-2 viremia performed at hospital admission between March 2020 and January 2022. SARS-CoV-2 viremia was assessed by means of GeneFinderTM COVID-19 Plus RealAmp Kit assay and SARS-CoV-2 ELITe MGB® Kit using <45 cycle threshold to define positivity. Uni and multivariable logistic regression model were built to assess the association between SARS-CoV-2 positive viremia and death. RESULTS: Four hundred and forty-five out of 2,822 COVID-19 patients had an available SARS-CoV-2 viremia, prevalently males (64.9%) with a median age of 65 years (IQR 55-75). Patients with a positive SARS-CoV-2 viremia (86/445; 19.3%) more frequently presented with a severe or critical disease (67.4% vs 57.1%) when compared to those with a negative SARS-CoV-2 viremia. Deceased subjects (88/445; 19.8%) were older [75 (IQR 68-82) vs 63 (IQR 54-72)] and showed more frequently a detectable SARS-CoV-2 viremia at admission (60.2% vs 22.7%) when compared to survivors. In univariable analysis a positive SARS-CoV-2 viremia was associated with a higher odd of death [OR 5.16 (95% CI 3.15-8.45)] which was confirmed in the multivariable analysis adjusted for age, biological sex and, disease severity [AOR 6.48 (95% CI 4.05-10.45)]. The association between positive SARS-CoV-2 viremia and death was consistent in the period 1 February 2021-31 January 2022 [AOR 5.86 (95% CI 3.43-10.16)] and in subgroup analysis according to disease severity: mild/moderate [AOR 6.45 (95% CI 2.84-15.17)] and severe/critical COVID-19 patients [AOR 6.98 (95% CI 3.68-13.66)]. CONCLUSIONS: SARS-CoV-2 viremia resulted associated to COVID-19 mortality and should be considered in the initial assessment of COVID-19 hospitalized patients.


Assuntos
COVID-19 , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , SARS-CoV-2 , Viremia , Hospitalização , Estudos Prospectivos
6.
BMC Genom Data ; 24(1): 13, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869294

RESUMO

BACKGROUND: Genome Wide Association Studies (GWAS) are based on the observation of genome-wide sets of genetic variants - typically single-nucleotide polymorphisms (SNPs) - in different individuals that are associated with phenotypic traits. Research efforts have so far been directed to improving GWAS techniques rather than on making the results of GWAS interoperable with other genomic signals; this is currently hindered by the use of heterogeneous formats and uncoordinated experiment descriptions. RESULTS: To practically facilitate integrative use, we propose to include GWAS datasets within the META-BASE repository, exploiting an integration pipeline previously studied for other genomic datasets that includes several heterogeneous data types in the same format, queryable from the same systems. We represent GWAS SNPs and metadata by means of the Genomic Data Model and include metadata within a relational representation by extending the Genomic Conceptual Model with a dedicated view. To further reduce the gap with the descriptions of other signals in the repository of genomic datasets, we perform a semantic annotation of phenotypic traits. Our pipeline is demonstrated using two important data sources, initially organized according to different data models: the NHGRI-EBI GWAS Catalog and FinnGen (University of Helsinki). The integration effort finally allows us to use these datasets within multi-sample processing queries that respond to important biological questions. These are then made usable for multi-omic studies together with, e.g., somatic and reference mutation data, genomic annotations, epigenetic signals. CONCLUSIONS: As a result of the our work on GWAS datasets, we enable 1) their interoperable use with several other homogenized and processed genomic datasets in the context of the META-BASE repository; 2) their big data processing by means of the GenoMetric Query Language and associated system. Future large-scale tertiary data analysis may extensively benefit from the addition of GWAS results to inform several different downstream analysis workflows.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Humanos , Epigenômica , Big Data , Análise de Dados
7.
BMC Bioinformatics ; 23(Suppl 11): 491, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396980

RESUMO

BACKGROUND: Genomics and virology are unquestionably important, but complex, domains being investigated by a large number of scientists. The need to facilitate and support work within these domains requires sharing of databases, although it is often difficult to do so because of the different ways in which data is represented across the databases. To foster semantic interoperability, models are needed that provide a deep understanding and interpretation of the concepts in a domain, so that the data can be consistently interpreted among researchers. RESULTS: In this research, we propose the use of conceptual models to support semantic interoperability among databases and assess their ontological clarity to support their effective use. This modeling effort is illustrated by its application to the Viral Conceptual Model (VCM) that captures and represents the sequencing of viruses, inspired by the need to understand the genomic aspects of the virus responsible for COVID-19. For achieving semantic clarity on the VCM, we leverage the "ontological unpacking" method, a process of ontological analysis that reveals the ontological foundation of the information that is represented in a conceptual model. This is accomplished by applying the stereotypes of the OntoUML ontology-driven conceptual modeling language.As a result, we propose a new OntoVCM, an ontologically grounded model, based on the initial VCM, but with guaranteed interoperability among the data sources that employ it. CONCLUSIONS: We propose and illustrate how the unpacking of the Viral Conceptual Model resolves several issues related to semantic interoperability, the importance of which is recognized by the "I" in FAIR principles. The research addresses conceptual uncertainty within the domain of SARS-CoV-2 data and knowledge.The method employed provides the basis for further analyses of complex models currently used in life science applications, but lacking ontological grounding, subsequently hindering the interoperability needed for scientists to progress their research.


Assuntos
COVID-19 , Semântica , Humanos , SARS-CoV-2 , Armazenamento e Recuperação da Informação , Modelos Teóricos
8.
BMC Bioinformatics ; 23(1): 401, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175857

RESUMO

BACKGROUND: Population variant analysis is of great importance for gathering insights into the links between human genotype and phenotype. The 1000 Genomes Project established a valuable reference for human genetic variation; however, the integrative use of the corresponding data with other datasets within existing repositories and pipelines is not fully supported. Particularly, there is a pressing need for flexible and fast selection of population partitions based on their variant and metadata-related characteristics. RESULTS: Here, we target general germline or somatic mutation data sources for their seamless inclusion within an interoperable-format repository, supporting integration among them and with other genomic data, as well as their integrated use within bioinformatic workflows. In addition, we provide VarSum, a data summarization service working on sub-populations of interest selected using filters on population metadata and/or variant characteristics. The service is developed as an optimized computational framework with an Application Programming Interface (API) that can be called from within any existing computing pipeline or programming script. Provided example use cases of biological interest show the relevance, power and ease of use of the API functionalities. CONCLUSIONS: The proposed data integration pipeline and data set extraction and summarization API pave the way for solid computational infrastructures that quickly process cumbersome variation data, and allow biologists and bioinformaticians to easily perform scalable analysis on user-defined partitions of large cohorts from increasingly available genetic variation studies. With the current tendency to large (cross)nation-wide sequencing and variation initiatives, we expect an ever growing need for the kind of computational support hereby proposed.


Assuntos
Genômica , Metadados , Biologia Computacional , Genótipo , Humanos , Software
9.
Comput Struct Biotechnol J ; 20: 4238-4250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35945925

RESUMO

The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we study mutations' convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types are shown by means of a tree-based representation of lineages, visually capturing mutations' behaviors. Our method confirms several well-known cases; moreover, the provided evidence suggests that our workflow can explain aspects of the future mutational evolution of SARS-CoV-2.

10.
Database (Oxford) ; 20222022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657113

RESUMO

The Gene Expression Omnibus (GEO) is a public archive containing >4 million digital samples from functional genomics experiments collected over almost two decades. The accompanying metadata describing the experiments suffer from redundancy, inconsistency and incompleteness due to the prevalence of free text and the lack of well-defined data formats and their validation. To remedy this situation, we created Genomic Metadata Integration (GeMI; http://gmql.eu/gemi/), a web application that learns to automatically extract structured metadata (in the form of key-value pairs) from the plain text descriptions of GEO experiments. The extracted information can then be indexed for structured search and used for various downstream data mining activities. GeMI works in continuous interaction with its users. The natural language processing transformer-based model at the core of our system is a fine-tuned version of the Generative Pre-trained Transformer 2 (GPT2) model that is able to learn continuously from the feedback of the users thanks to an active learning framework designed for the purpose. As a part of such a framework, a machine learning interpretation mechanism (that exploits saliency maps) allows the users to understand easily and quickly whether the predictions of the model are correct and improves the overall usability. GeMI's ability to extract attributes not explicitly mentioned (such as sex, tissue type, cell type, ethnicity and disease) allows researchers to perform specific queries and classification of experiments, which was previously possible only after spending time and resources with tedious manual annotation. The usefulness of GeMI is demonstrated on practical research use cases. Database URL http://gmql.eu/gemi/.


Assuntos
Genômica , Metadados , Mineração de Dados , Aprendizado de Máquina , Software
11.
Sci Data ; 9(1): 260, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650205

RESUMO

Since the outbreak of the COVID-19 pandemic, many research organizations have studied the genome of the SARS-CoV-2 virus; a body of public resources have been published for monitoring its evolution. While we experience an unprecedented richness of information in this domain, we also ascertained the presence of several information quality issues. We hereby propose CoV2K, an abstract model for explaining SARS-CoV-2-related concepts and interactions, focusing on viral mutations, their co-occurrence within variants, and their effects. CoV2K provides a clear and concise route map for understanding different connected types of information related to the virus; it thus drives a process of data and knowledge integration that aggregates information from several current resources, harmonizing their content and overcoming incompleteness and inconsistency issues. CoV2K is available for exploration as a graph that can be queried through a RESTful API addressing single entities or paths through their relationships. Practical use cases demonstrate its application to current knowledge inquiries.


Assuntos
COVID-19 , Modelos Biológicos , SARS-CoV-2 , Conjuntos de Dados como Assunto , Humanos , Mutação , Pandemias
12.
Bioinformatics ; 38(7): 1988-1994, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040923

RESUMO

MOTIVATION: The ongoing evolution of SARS-CoV-2 and the rapid emergence of variants of concern at distinct geographic locations have relevant implications for the implementation of strategies for controlling the COVID-19 pandemic. Combining the growing body of data and the evidence on potential functional implications of SARS-CoV-2 mutations can suggest highly effective methods for the prioritization of novel variants of potential concern, e.g. increasing in frequency locally and/or globally. However, these analyses may be complex, requiring the integration of different data and resources. We claim the need for a streamlined access to up-to-date and high-quality genome sequencing data from different geographic regions/countries, and the current lack of a robust and consistent framework for the evaluation/comparison of the results. RESULTS: To overcome these limitations, we developed ViruClust, a novel tool for the comparison of SARS-CoV-2 genomic sequences and lineages in space and time. ViruClust is made available through a powerful and intuitive web-based user interface. Sophisticated large-scale analyses can be executed with a few clicks, even by users without any computational background. To demonstrate potential applications of our method, we applied ViruClust to conduct a thorough study of the evolution of the most prevalent lineage of the Delta SARS-CoV-2 variant, and derived relevant observations. By allowing the seamless integration of different types of functional annotations and the direct comparison of viral genomes and genetic variants in space and time, ViruClust represents a highly valuable resource for monitoring the evolution of SARS-CoV-2, facilitating the identification of variants and/or mutations of potential concern. AVAILABILITY AND IMPLEMENTATION: ViruClust is openly available at http://gmql.eu/viruclust/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mapeamento Cromossômico
13.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222749

RESUMO

BACKGROUND: Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts to extract-for each variant/mutation-its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with labeled higher/lower levels in relation to the nonmutated virus. RESULTS: The proposed framework comprises (i) the provisioning of abstracts from a COVID-19-related big data corpus (CORD-19) and (ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application (http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the predictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was trained through a carefully designed process, using a minimal and highly diversified pool of samples. CONCLUSIONS: The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-structured text translation tasks, which are typical of biomedical domains.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , SARS-CoV-2/genética , COVID-19/genética , Mutação , Cinética
14.
Methods Mol Biol ; 2401: 195-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34902130

RESUMO

The COVID-19 pandemic has hit heavily many aspects of our lives. At this time, genomic research is concerned with exploiting available datasets and knowledge to fuel discovery on this novel disease. Studies that can precisely characterize the gene expression profiles of human hosts infected by SARS-CoV-2 are of significant relevance. However, not many such experiments have yet been produced to date, nor made publicly available online. Thus, it is of paramount importance that data analysts explore all possibilities to integrate information coming from similar viruses and related diseases; interestingly, microarray gene profile experiments become extremely valuable for this purpose. This chapter reviews the aspects that should be considered when integrating transcriptomics data, considering mainly samples infected by different viruses and combining together various data types and also the extracted knowledge. It describes a series of scenarios from studies performed in literature and it suggests possible other directions of noteworthy integration.


Assuntos
COVID-19 , Perfilação da Expressão Gênica , COVID-19/genética , Genômica , Humanos , Pandemias , Transcriptoma
15.
Artigo em Inglês | MEDLINE | ID: mdl-32750853

RESUMO

The integration of genomic metadata is, at the same time, an important, difficult, and well-recognized challenge. It is important because a wealth of public data repositories is available to drive biological and clinical research; combining information from various heterogeneous and widely dispersed sources is paramount to a number of biological discoveries. It is difficult because the domain is complex and there is no agreement among the various metadata definitions, which refer to different vocabularies and ontologies. It is well-recognized in the bioinformatics community because, in the common practice, repositories are accessed one-by-one, learning their specific metadata definitions as result of long and tedious efforts, and such practice is error-prone. In this paper, we describe META-BASE, an architecture for integrating metadata extracted from a variety of genomic data sources, based upon a structured transformation process. We present a variety of innovative techniques for data extraction, cleaning, normalization and enrichment. We propose a general, open and extensible pipeline that can easily incorporate any number of new data sources, and propose the resulting repository-already integrating several important sources-which is exposed by means of practical user interfaces to respond biological researchers' needs.


Assuntos
Genômica , Metadados , Biologia Computacional , Armazenamento e Recuperação da Informação
16.
Sci Rep ; 11(1): 21068, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702903

RESUMO

Since its emergence in late 2019, the diffusion of SARS-CoV-2 is associated with the evolution of its viral genome. The co-occurrence of specific amino acid changes, collectively named 'virus variant', requires scrutiny (as variants may hugely impact the agent's transmission, pathogenesis, or antigenicity); variant evolution is studied using phylogenetics. Yet, never has this problem been tackled by digging into data with ad hoc analysis techniques. Here we show that the emergence of variants can in fact be traced through data-driven methods, further capitalizing on the value of large collections of SARS-CoV-2 sequences. For all countries with sufficient data, we compute weekly counts of amino acid changes, unveil time-varying clusters of changes with similar-rapidly growing-dynamics, and then follow their evolution. Our method succeeds in timely associating clusters to variants of interest/concern, provided their change composition is well characterized. This allows us to detect variants' emergence, rise, peak, and eventual decline under competitive pressure of another variant. Our early warning system, exclusively relying on deposited sequences, shows the power of big data in this context, and concurs to calling for the wide spreading of public SARS-CoV-2 genome sequencing for improved surveillance and control of the COVID-19 pandemic.


Assuntos
COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/virologia , SARS-CoV-2/genética , Aminoácidos/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Mineração de Dados , Europa (Continente)/epidemiologia , Genoma Viral , Humanos , Japão/epidemiologia , Filogenia , Fatores de Tempo , Estados Unidos/epidemiologia
17.
Database (Oxford) ; 20212021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585726

RESUMO

EpiSurf is a Web application for selecting viral populations of interest and then analyzing how their amino acid changes are distributed along epitopes. Viral sequences are searched within ViruSurf, which stores curated metadata and amino acid changes imported from the most widely used deposition sources for viral databases (GenBank, COVID-19 Genomics UK (COG-UK) and Global initiative on sharing all influenza data (GISAID)). Epitopes are searched within the open source Immune Epitope Database or directly proposed by users by indicating their start and stop positions in the context of a given viral protein. Amino acid changes of selected populations are joined with epitopes of interest; a result table summarizes, for each epitope, statistics about the overlapping amino acid changes and about the sequences carrying such alterations. The results may also be inspected by the VirusViz Web application; epitope regions are highlighted within the given viral protein, and changes can be comparatively inspected. For sequences mutated within the epitope, we also offer a complete view of the distribution of amino acid changes, optionally grouped by the location, collection date or lineage. Thanks to these functionalities, EpiSurf supports the user-friendly testing of epitope conservancy within selected populations of interest, which can be of utmost relevance for designing vaccines, drugs or serological assays. EpiSurf is available at two endpoints. Database URL: http://gmql.eu/episurf/ (for searching GenBank and COG-UK sequences) and http://gmql.eu/episurf_gisaid/ (for GISAID sequences).


Assuntos
Substituição de Aminoácidos , Antígenos Virais/química , Epitopos/química , Internet , Metadados , SARS-CoV-2/química , Ferramenta de Busca , Software , Aminoácidos/química , Aminoácidos/imunologia , Antígenos Virais/imunologia , COVID-19/virologia , Epitopos/imunologia , Humanos , SARS-CoV-2/imunologia
18.
Nucleic Acids Res ; 49(15): e90, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107016

RESUMO

Variant visualization plays an important role in supporting the viral evolution analysis, extremely valuable during the COVID-19 pandemic. VirusViz is a web-based application for comparing variants of selected viral populations and their sub-populations; it is primarily focused on SARS-CoV-2 variants, although the tool also supports other viral species (SARS-CoV, MERS-CoV, Dengue, Ebola). As input, VirusViz imports results of queries extracting variants and metadata from the large database ViruSurf, which integrates information about most SARS-CoV-2 sequences publicly deposited worldwide. Moreover, VirusViz accepts sequences of new viral populations as multi-FASTA files plus corresponding metadata in CSV format; a bioinformatic pipeline builds a suitable input for VirusViz by extracting the nucleotide and amino acid variants. Pages of VirusViz provide metadata summarization, variant descriptions, and variant visualization with rich options for zooming, highlighting variants or regions of interest, and switching from nucleotides to amino acids; sequences can be grouped, groups can be comparatively analyzed. For SARS-CoV-2, we manually collect mutations with known or predicted levels of severity/virulence, as indicated in linked research articles; such critical mutations are reported when observed in sequences. The system includes light-weight project management for downloading, resuming, and merging data analysis sessions. VirusViz is freely available at http://gmql.eu/virusviz/.


Assuntos
COVID-19/virologia , Visualização de Dados , SARS-CoV-2/química , SARS-CoV-2/genética , Sequência de Aminoácidos , Sequência de Bases , Bases de Dados Factuais , Humanos , Bases de Conhecimento , SARS-CoV-2/classificação , África do Sul/epidemiologia , Estados Unidos/epidemiologia
19.
BioTech (Basel) ; 10(4)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822801

RESUMO

Since the beginning of 2020, the COVID-19 pandemic has posed unprecedented challenges to viral data analysis and connected host disease diagnostic methods. We propose VirusLab, a flexible system for analysing SARS-CoV-2 viral sequences and relating them to metadata or clinical information about the host. VirusLab capitalizes on two existing resources: ViruSurf, a database of public SARS-CoV-2 sequences supporting metadata-driven search, and VirusViz, a tool for visual analysis of search results. VirusLab is designed for taking advantage of these resources within a server-side architecture that: (i) covers pipelines based on approaches already in use (ARTIC, Galaxy) but entirely cutomizable upon user request; (ii) predigests analysis of raw sequencing data from different platforms (Oxford Nanopore and Illumina); (iii) gives access to public archives datasets; (iv) supplies user-friendly reporting - making it a tool that can also be integrated into a business environment. VirusLab can be installed and hosted within the premises of any organization where information about SARS-CoV-2 sequences can be safely integrated with information about hosts (e.g., clinical metadata). A system such as VirusLab is not currently available in the landscape of similar providers: our results show that VirusLab is a powerful tool to generate tabular/graphical and machine readable reports that can be integrated in more complex pipelines. We foresee that the proposed system can support many research-oriented and therapeutic scenarios within hospitals or the tracing of viral sequences and their mutational processes within organizations for viral surveillance.

20.
Nucleic Acids Res ; 49(D1): D817-D824, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33045721

RESUMO

ViruSurf, available at http://gmql.eu/virusurf/, is a large public database of viral sequences and integrated and curated metadata from heterogeneous sources (RefSeq, GenBank, COG-UK and NMDC); it also exposes computed nucleotide and amino acid variants, called from original sequences. A GISAID-specific ViruSurf database, available at http://gmql.eu/virusurf_gisaid/, offers a subset of these functionalities. Given the current pandemic outbreak, SARS-CoV-2 data are collected from the four sources; but ViruSurf contains other virus species harmful to humans, including SARS-CoV, MERS-CoV, Ebola and Dengue. The database is centered on sequences, described from their biological, technological and organizational dimensions. In addition, the analytical dimension characterizes the sequence in terms of its annotations and variants. The web interface enables expressing complex search queries in a simple way; arbitrary search queries can freely combine conditions on attributes from the four dimensions, extracting the resulting sequences. Several example queries on the database confirm and possibly improve results from recent research papers; results can be recomputed over time and upon selected populations. Effective search over large and curated sequence data may enable faster responses to future threats that could arise from new viruses.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Curadoria de Dados/métodos , Bases de Dados Genéticas , Genoma Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Variação Genética , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Pandemias , SARS-CoV-2/fisiologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...